COLDSPRING

BETTER LIVING THROUGH
CONFIGURATION

http://www.markdrew.co.uk
http://www.markdrew.co.uk

An ancient program,

written in VB6 and COM

filled with GOTOs must

be unraveled & updated. ’
-+

'
.. R
¥ ’/

THE
SPAGHETTI

CODE

Welcome to the
first meeting of

SPAGHETT]
CODERS
ANONYMOUS
(SCA)

What this presentation
IS about

® Understanding ColdSpring

® Getting to grips with Dependency Injection
® How to write (more) reusable code
® How to write (more) configurable code

® |aughing at typos made during the
presentation

® Helping me spot typos so that | don’t spend
|0 minutes debugging something

What this is not about

® A framework battle
® A headache inducer

® How to cope with other
developer’s badly written
code (search wikipedia for
Spanish Inquisition
Torture Methods for more
details)

You never expect them do you!?

Who is Mark Drew!?

CFEclipse’s Lead Developer
Adobe Community Expert

Product Manager at Design UK
http://www.designuk.com developing Lava
Suite. A CMS/CRM/eComm application

UK ColdFusion User Group’s Co-Manager

A ColdFusion Developer since ‘97 and
Web developer since 94

Reactor ORM Project Manager
A reformed Spaghetti coder @ CF

http://www.designuk.com
http://www.designuk.com

What *IS* ColdSpring

An Inversion of Control Framework

or..A Dependency Injection Framework

Based on the Java Spring Framework
(not a port, doesn’t include the MVC

stuff) ;
A component factory (named a bean [J:T.\(3)!

factory... Tasty!)

Not to be used in
enclosed spaces

6

Inversion of Control

and Dependency Injection

It INJECTS dependencies into your
components for you

Why!? Code should be re-usable, although
good, it means you have to wire more
together (aka: coupling)

Less coupling is better practice, your
components shouldn’t need to know how to
create their own dependencies

You just ask the BeanFactory for your
objects and they come all ready for you

Ready for the show!

Real World Example

What do | need to get to work?
... an Assistant!

... T hat is, a bean factory, it prepares things “to
do work” so | don’t have to.

My iPod ... but they need headphones
My cigarettes... but they need a lighter

And my jacket...

My Prep List

® |Pod needs headphones

® Cigarettes need a lighter (which needs fuel,
but developers and flammable liquids don’t go
together)

® My Jacket needs the |IPod and Cigarettes to
be in it

Real Life Summary

® | have “inverted” who is controlling the
supply of my objects

® | have let this “inverted” controller “inject”
the dependencies into my objects

10

ColdFusion Example
(ShoppingBasket.cfc)

i<cffunction name="init" returnType="Any" output="false">
<cfargument name="MaxItems" type="numeric">

<!--- We need the TaxCalculator to do figure out the tax, so lets create 1t ---—>
<cfset this.TaxCalculator = CreateObject("component”, TaxCalculator).init()>
<!--- Set the local variable --->

<cfset this.MaxItems = arguments.MaxItems>
<cfreturn this/>
</cffunction>

What'’s wrong with that?!

What happens if ...

® What happens if the
TaxCalculator changes!?

'——V

® |ets add a Tax Rate to the Tax "
Calculator
v/

® (Dont even get me started on ‘
the tax increases on
cigarettes and alcohol!)

Brain the size of a Planet and | have to deal with taxes??

12

<cffunction name="1init" returnType="Any" output="false">

</cffunction>

Example: ShoppingBasket
with Tax Calculator

<cfargument name="MaxItems" type="numeric">

<cfargument name="TaxRate" type="numeric">

<!--- We need the TaxCalculator to do figure out the tax, so lets create 1t --->

<cfset this.TaxCalculator = CreateObject("component”, TaxCalculator)
.init(arguments.TaxRate)>

<!--- Set the local variable --->

<cfset this.MaxItems = arguments.MaxItems>

<cfreturn this/>

Don’t over do it or anything...

13

What is wrong with this!?

® The TaxCalculator’s constructor changed.

® The basket is now creating and dealing with
the TaxCalculator and needs a TaxRate

® |tis not really in the remit of the basket

® |f we change it again, we have to go and
change our code

® |ets clean it up a bit

14

Remove the
constructor...

i<cffunction name="1n1t" returnType="Any" output="false">
<cfargument name="MaxItems" type="numeric">
<cfargument name="TaxCalculator"” type="TaxCalculator">

<!--- We are expecting a configured Tax Calculator --->
<cfset this.TaxCalculator = arguments.TaxCalculator>
<!--- Set the local variable --->

<cfset this.MaxItems
<cfreturn this/>
</cffunctions]

arguments .MaxItems>

15

What did we do there!

® Removed the coupling between the Basket
and the TaxCalculator

® The dependency is still there

® The Basket now just expects a ready
TaxCalculator

® |t doesn’t care how the TaxCalculator is
“built”

16

Separation of Concerns

® Components don’t have to do things that are
not related to their function

® Components aren’t tied to other
components’ implementations

e Components are easier to configure without
changes to the code

17

But...

® We just moved the responsibility to our
calling code

® We changed our code from this:

<cfset Basket = CreateObject("component"”, "Basket").init(10)>

® TJo this:

<cfset TaxCalculator = CreateObject("component”, "TaxCalculator").init(1l.175)>
<cfset Basket = CreateObject("component", "Basket").init(10, TaxCalculator)>

18

What if...

® There was a way to manage this “wiring”
code?

® Ohh...|I know... ColdSpring!

® Our calling code would look like:

<cfset Basket = bf.getBean("Basket")>

19

ColdSpring

ColdSpring would create the dependencies
and wire them together

We don’t need to change the code in all our
components that use TaxCalculator

There is no need to do special coding (no
special attributes)

And we can see our dependencies in one
place!

We have been saved by Dependency
Injection!

20

Quick Terminology

Bean = Component

BeanFactory = ColdSpring,
the holder of the beans

Singleton = There can be
only one

Lazyload = Load it when
its called not on startup

21

The BeanFactory

® Holds all your components

® |nstantiates, configures and resolves
dependencies for your components (beans)

® c.g.A ShoppingBasket needs a
TaxCalculator that needs a Config

22

Implementing ColdSpring

® Setup with a simple XML File

® Based on the Java-beans spec
(hence we call components
<beans>)

® Defines the “beans” (i.e.
Components) and what they
need to be initialised.

23

Implementing ColdSpring

<beans>

<bean 1d="ShoppingBasket"
class="presentation.cs.ShoppingBasket"
/>

</beans>
® Configure “presentation.cs.ShoppingBasket”

and when | ask for “ShoppingBasket” return an
initialized instance of the component

24

Impementing ColdSpring

® Asa constructor (...init (MaxItems))

<beans>

<bean 1d="ShoppingBasket"
class="presentation.cs.ShoppingBasket">

<constructor-arg name="MaxItems">
<value>10</value>|
</constructor-arg>

</bean>

</beans>

25

Impementing ColdSpring

® As a property

(...setMaxItems(MaxItems))
<beans>

<bean 1d="ShoppingBasket"
class="presentation.cs.ShoppingBasket">

<property name="MaxItems">
<value>10</value>
</property>

</bean>

</beans>

26

Implementing our

Set up the

<beans> TaxCalculator

<!-- define the Tax Calculg
<bean 1d="TaxCalculator" class="presentation.cs.TaxCalculator">
<constructor-arg name="Tax

<value>1.175</valyg Set up the

</constructor-arg> .
</bean> ShoppingBasket

<bean 1d="ShoppingBasket"

class="presentation.cs.ShoppingB 3
<constructor-arg name="MaxItems" o sUrec
<constructor-arg name="TaxCalcul = -

<ref bean="TaxCalculator" />
</constructor-arg>
</bean>

</beans>

27

Benefits:

No code was needed in the ShoppingBasket
to setup the TaxCalculator

Your code is nhow more reusable testable and
maintainable %

Go you!

28

Configuring YOUR beans

® Not all components are as nicely written as
the Shopping Basket

e Different components require different
configuration options

® How do we pass arrays and structures to our
existing components!?

29

Data Types

® Components can be configured with:
® Strings (value)
® Arrays (list)
® Structures (map)

® Other components (ref bean)

30

Strings:

® You have seen this before:

<bean 1d="TaxCalculator" class="presentation.cs.TaxCalculator"”>

<constructor-arg name="TaxRate">
<value>2</value>
</constructor-arg>
</bean>

31

Arrays:

® Also known as a “list”

<bean 1d="TaxCalculator” class="presentation.cs.TaxCalculator">
<constructor-arg name="TaxRate">
<value>2</value>
</constructor-arg>
<constructor-arg name="DeliveryCountries">
<list>
<value>UK</value>
<value>US</value>
<value>EUROPE</value>
</list>

</constructor-arg>

32

Structures:

® Also known as a“map”

<bean 1d="BeanExample" class="presentation.cs.Bean">
<constructor-arg name="maps">
<map>

FIELD

email

MIXED

FIELD

email

RULE

required

RULE

required

<entry key="field"><value>email</value></entry>
<entry key="rule"><value>required</value></entry>

<entry key="Mixed">
<map>

<entry key="field"><value>email</value></entry>
<entry key="rule"><value>required</value></entry>

</map>

</entry>
</map>
</constructor-arg>
</bean>

33

Components:

® You have seen this before in the
Shopping Basket

® Known as a “ref bean” i.e.:
A reference to a bean

<bean 1d="BeanExample" class="presentation.cs.Bean">
<constructor-arg name="Reference">
<ref bean="Reference" />

</constructor-arg>

</bean>

34

Auto-Magic Wiring

You don’t need to explicitly pass beans to
your components

Using accessors (getters and setters)
ColdSpring will pass in objects if required

set<BeanName> in your component is all
that is required.

and autowire="byName” or
autowire="byType”

35

Auto-Magic Wiring...

set TaxCalculator called and it will pass the
TaxCalculator Bean

or

init(TaxCalculator) injects by type of your init
arguments

36

Got it!

® Questions!?

(The really difficult)
Installation

® Download it from

http://www.coldspringframework.org/
Copy to your webroot
or

Create a mapping called “coldspring”

38

http://www.coldspringframework.org
http://www.coldspringframework.org

Implementation

<!--- Create a bean factory --->
<cfset myBeanFactory = CreateObject("component”,
"coldspring.beans.DefaultXmlBeanFactory").in1t()>

I 4

39

Configuration

The DefaultXmlBeanFactory can only read an
XML formatted configuration

Currently no implementation for the runtime
addition of bean settings

You can’t change the configuration at
runtime... really... its dangerous 0

BUT: XML can be constructed and passed in

40

Passing in XML

® Configuration can be passed in as:
® A fully qualified path
® Raw XML as a string
e An XML Obiject

41

Passing a File Path

<cfset myBeanFactory.loadBeansFromXmlLFile(expandPath("Coldspring.xml™)
, true)>

true = Lazy Initalisation, e.g. dont load the beans unless
they are called

42

Passing a Raw XML
Strin

<!--- As a raw xml string --->
<cfsavecontent variable="beanConfig">
<beans>

<bean 1d="aBean" class="app.model.SomeComponent"” />

</beans>

</cfsavecontent>

<cfset myBeanFactory.IoadBeansFromeIRawkbeanConfig
, true)>

43

Passing an XML Object

<!--- As an XML object ---—>
<cffile action ="read" file="#expandPath("Coldspring.xmlL")#"
variable="xmlContent">

<cfset beanXML = XMLParse(xmlContent)>
<cfset myBeanFactory.1oadBeansFromelOijbeanXML
, true)>

44

Getting your objects

<!--- Create a bean factory --->
<cfset myBeanFactory = CreateObject("component”,
"coldspring.beans.DefaultXmlBeanFactory").init()>

<!--- As a Path --—>

<cfset myBeanFactory.loadBeansFromXmlFile(expandPath("Coldspring.xmlL™)
, true)>

<!--- Get the object ---—>

<cfset myBasket = myBeanFactory.getBean("ShoppingBasket") />

45

Demo

® Time to prove it!

46

AOP Anyone!

Aspect Oriented Programming

Some functionality applies across many
different parts of your code (logging,
versioning, security, etc...)

Code can become entangled, and repetitive
functions appear in your components

Different ‘aspects’ of your code can be wired
together to execute without affecting each
other

47

AOP Continued...

Call your beans as normal

You can intercept method calls and
“introduce” new functionality with
Advisors

No change needs to be done to your bean

Advisors have functions to run before,
during and after selected method calls in
your component

48

Demo

® | ots of new language coming up! (but its OK!

Calm Down!)

5 P L
o

kl\ b

eaid -

“l sed.... Calm down.. Calm down!”

49

Web-Services
(Remote Proxies)

® Generate Web-Services from your Beans
® Creates a Remote Fagade to your Beans
® Select methods to expose

® Generates a cfc with remote functions
(yes! An actual CFC file! OMG!)

50

Demo

® | ets expose documents to the world using a
Remote Proxy!

Not quite the remote | was thinking of (Ed.)

51

Summary

Learned about Dependency Injection

Saw how to make re-usable components
Defined those objects in ColdSpring
Created ColdSpring and Called your objects
Got your AOP on

Exposed yourself (as a web-service)

The cake is a lie...

52

¢ é'h ~a.

. -
in

® You ask the Questions
® | shall answer them (If | can!)
® You can be a reformed Spaghetti coder too!

® mark@markdrew.co.uk

53

mailto:mark@markdrew.co.uk
mailto:mark@markdrew.co.uk

