
COLDSPRING
Better Living through

Configuration

Mark Drew
http://www.markdrew.co.uk

1

http://www.markdrew.co.uk
http://www.markdrew.co.uk

Welcome to the
first meeting of

SPAGHETTI
CODERS

ANONYMOUS
(SCA)

2

What this presentation
IS about

• Understanding ColdSpring

• Getting to grips with Dependency Injection

• How to write (more) reusable code

• How to write (more) configurable code

• Laughing at typos made during the
presentation

• Helping me spot typos so that I don’t spend
10 minutes debugging something

3

What this is not about
• A framework battle

• A headache inducer

• How to cope with other
developer’s badly written
code (search wikipedia for
Spanish Inquisition
Torture Methods for more
details)

You never expect them do you?

4

Who is Mark Drew?

• CFEclipse’s Lead Developer

• Adobe Community Expert

• Product Manager at Design UK
http://www.designuk.com developing Lava
Suite. A CMS/CRM/eComm application

• UK ColdFusion User Group’s Co-Manager

• A ColdFusion Developer since ‘97 and
Web developer since ’94

• Reactor ORM Project Manager

• A reformed Spaghetti coder

5

http://www.designuk.com
http://www.designuk.com

What *IS* ColdSpring
• An Inversion of Control Framework

• or.. A Dependency Injection Framework

• Based on the Java Spring Framework
(not a port, doesn’t include the MVC
stuff)

• A component factory (named a bean
factory... Tasty!)

Not to be used in
enclosed spaces

6

Inversion of Control
and Dependency Injection

• It INJECTS dependencies into your
components for you

• Why? Code should be re-usable, although
good, it means you have to wire more
together (aka: coupling)

• Less coupling is better practice, your
components shouldn’t need to know how to
create their own dependencies

• You just ask the BeanFactory for your
objects and they come all ready for you

Ready for the show!

7

Real World Example

• What do I need to get to work?

• ... an Assistant!

• ... That is, a bean factory, it prepares things “to
do work” so I don’t have to.

• My iPod ... but they need headphones

• My cigarettes... but they need a lighter

• And my jacket...

8

My Prep List

• IPod needs headphones

• Cigarettes need a lighter (which needs fuel,
but developers and flammable liquids don’t go
together)

• My Jacket needs the IPod and Cigarettes to
be in it

9

Real Life Summary

• I have “inverted” who is controlling the
supply of my objects

• I have let this “inverted” controller “inject”
the dependencies into my objects

10

ColdFusion Example
(ShoppingBasket.cfc)

What’s wrong with that?!
11

What happens if ...

• What happens if the
TaxCalculator changes?

• Lets add a Tax Rate to the Tax
Calculator

• (Dont even get me started on
the tax increases on
cigarettes and alcohol!)

Brain the size of a Planet and I have to deal with taxes??

12

Example: ShoppingBasket
with Tax Calculator

Don’t over do it or anything...

13

What is wrong with this?

• The TaxCalculator’s constructor changed.

• The basket is now creating and dealing with
the TaxCalculator and needs a TaxRate

• It is not really in the remit of the basket

• If we change it again, we have to go and
change our code

• Lets clean it up a bit

14

Remove the
constructor...

15

What did we do there?

• Removed the coupling between the Basket
and the TaxCalculator

• The dependency is still there

• The Basket now just expects a ready
TaxCalculator

• It doesn’t care how the TaxCalculator is
“built”

16

Separation of Concerns

• Components don’t have to do things that are
not related to their function

• Components aren’t tied to other
components’ implementations

• Components are easier to configure without
changes to the code

17

But...

• We just moved the responsibility to our
calling code

• We changed our code from this:

<cfset Basket = CreateObject("component", "Basket").init(10)>

<cfset TaxCalculator = CreateObject("component", "TaxCalculator").init(1.175)>
<cfset Basket = CreateObject("component", "Basket").init(10, TaxCalculator)>

• To this:

18

What if...

• There was a way to manage this “wiring”
code?

• Ohh... I know... ColdSpring!

• Our calling code would look like:

<cfset Basket = bf.getBean("Basket")>

19

ColdSpring
• ColdSpring would create the dependencies

and wire them together

• We don’t need to change the code in all our
components that use TaxCalculator

• There is no need to do special coding (no
special attributes)

• And we can see our dependencies in one
place!

• We have been saved by Dependency
Injection!

20

Quick Terminology

• Bean = Component

• BeanFactory = ColdSpring,
the holder of the beans

• Singleton = There can be
only one

• LazyLoad = Load it when
its called not on startup

Sean’s cats are lazy

21

The BeanFactory

• Holds all your components

• Instantiates, configures and resolves
dependencies for your components (beans)

• e.g. A ShoppingBasket needs a
TaxCalculator that needs a Config

22

Implementing ColdSpring

• Setup with a simple XML File

• Based on the Java-beans spec
(hence we call components
<beans>)

• Defines the “beans” (i.e.
Components) and what they
need to be initialised.

23

Implementing ColdSpring

• Configure “presentation.cs.ShoppingBasket”
and when I ask for “ShoppingBasket” return an
initialized instance of the component

24

Impementing ColdSpring

• As a constructor (...init(MaxItems))

25

Impementing ColdSpring

• As a property
(...setMaxItems(MaxItems))

26

Implementing our
Example:

Set up the
TaxCalculator

Set up the
ShoppingBasket

Pass in the
configured TaxCalculator

27

Benefits:

• No code was needed in the ShoppingBasket
to setup the TaxCalculator

• Your code is now more reusable, testable and
maintainable

• Go you!

28

Configuring YOUR beans

• Not all components are as nicely written as
the Shopping Basket

• Different components require different
configuration options

• How do we pass arrays and structures to our
existing components?

29

Data Types

• Components can be configured with:

• Strings (value)

• Arrays (list)

• Structures (map)

• Other components (ref bean)

30

Strings:

• You have seen this before:

31

Arrays:

• Also known as a “list”

32

Structures:
• Also known as a “map”

33

Components:

• You have seen this before in the
Shopping Basket

• Known as a “ref bean” i.e.:
A reference to a bean

34

Auto-Magic Wiring

• You don’t need to explicitly pass beans to
your components

• Using accessors (getters and setters)
ColdSpring will pass in objects if required

• set<BeanName> in your component is all
that is required.

• and autowire=”byName” or
autowire=”byType”

35

Auto-Magic Wiring...

• setTaxCalculator called and it will pass the
TaxCalculator Bean

• or

• init(TaxCalculator) injects by type of your init
arguments

36

Got it?

• Questions?

37

(The really difficult)
Installation

• Download it from

• http://www.coldspringframework.org/

• Copy to your webroot

• or

• Create a mapping called “coldspring”

38

http://www.coldspringframework.org
http://www.coldspringframework.org

Implementation

• Create a bean factory:

39

Configuration

• The DefaultXmlBeanFactory can only read an
XML formatted configuration

• Currently no implementation for the runtime
addition of bean settings

• You can’t change the configuration at
runtime... really... its dangerous

• BUT: XML can be constructed and passed in

40

Passing in XML

• Configuration can be passed in as:

• A fully qualified path

• Raw XML as a string

• An XML Object

41

Passing a File Path

• Pass a fully qualified path to the xml file
true = Lazy Initalisation, e.g. dont load the beans unless

they are called

42

Passing a Raw XML
String

43

Passing an XML Object

44

Getting your objects

45

Demo

• Time to prove it!

46

 AOP Anyone?

• Aspect Oriented Programming

• Some functionality applies across many
different parts of your code (logging,
versioning, security, etc...)

• Code can become entangled, and repetitive
functions appear in your components

• Different ‘aspects’ of your code can be wired
together to execute without affecting each
other

47

AOP Continued...

• Call your beans as normal

• You can intercept method calls and
“introduce” new functionality with
Advisors

• No change needs to be done to your bean

• Advisors have functions to run before,
during and after selected method calls in
your component

48

Demo

• Lots of new language coming up! (but its OK!
Calm Down!)

“I sed.... Calm down.. Calm down!”
49

Web-Services
(Remote Proxies)

• Generate Web-Services from your Beans

• Creates a Remote Façade to your Beans

• Select methods to expose

• Generates a cfc with remote functions
(yes! An actual CFC file! OMG!)

50

Demo

• Lets expose documents to the world using a
Remote Proxy!

Not quite the remote I was thinking of (Ed.)

51

Summary

• Learned about Dependency Injection

• Saw how to make re-usable components

• Defined those objects in ColdSpring

• Created ColdSpring and Called your objects

• Got your AOP on

• Exposed yourself (as a web-service)
The cake is a lie...

52

Q and A

• You ask the Questions

• I shall answer them (If I can!)

• You can be a reformed Spaghetti coder too!

• mark@markdrew.co.uk

53

mailto:mark@markdrew.co.uk
mailto:mark@markdrew.co.uk

